reference
LaTeX
equation
$\tilde{x}$
$\widetilde{x_2}$
$\tilde{A}_2$
$\widetilde{A}_2$
$x_1,\cdots, x_n$
$x_1,\ldots, x_n$
Greek alphabet
Lowercase |
Uppercase |
latex |
α |
A |
\alpha |
β |
B |
\beta |
γ |
Γ |
\gamma |
δ |
Δ |
\delta |
ϵ |
E |
\epsilon |
ζ |
Z |
\zeta |
ν |
N |
\nu |
ξ |
Ξ |
\xi |
ο |
O |
\omicron |
π |
Π |
\pi |
ρ |
P |
\rho |
σ |
Σ |
\sigma |
η |
H |
\eta |
θ |
Θ |
\theta |
ι |
I |
\iota |
κ |
K |
\kappa |
λ |
Λ |
\lambda |
μ |
M |
\mu |
τ |
T |
\tau |
υ |
Υ |
\upsilon |
ϕ |
Φ |
\phi,(φ:\varphi) |
χ |
X |
\chi |
ψ |
Ψ |
\psi |
ω |
Ω |
\omega |
数学符号
符号 |
LATEX code |
Description |
根号 |
\sqrt[3]{12} |
$\sqrt[3]{12}$ |
分数 |
\frac{分子}{分母} |
$\frac{1}{2}$ |
求和 |
\sum_{下标}^{上标} |
$\sum_{n=1}^{100}$ |
上划线 |
\overline{式子} |
$\overline{a}$ |
下划线 |
\underline{式子} |
$\underline{a}$ |
罗马体 |
\mathrm{字符} |
$\mathrm{abcdefghijklmnopqrstuvwxyz}$ |
顶部曲线 |
\tilde{字} |
$\tilde{a}$ |
约等于 |
\approx |
$\approx$ |
小于等于 |
\leq |
$\leq$ |
大于等于 |
\geq |
$\geq$ |
不等于 |
\neq |
$\neq$ |
字母顶部的小折线 |
\hat{字母} |
$\hat{}$ |
相似符号 |
\sim |
$\sim$ |
下注释 |
\arg \underset{y}{\max} |
$\arg \underset{y}{\max}$ |
梯度 |
\nabla |
$\nabla$ |
偏导 |
\partial |
$\partial$ |
省略号 |
\cdots,单个为\cdot |
$\cdots$,单个为$\cdot$ |
花体大写 |
\mathscr{F} |
$\mathscr{F}$ |
空集 |
\varnothing |
$\varnothing$ |
向右箭头 |
\varnothing |
$\rightarrow$ |
属于 |
\in |
$\in$ |
元素乘(空心圆) |
\circ |
$\circ$ |
加粗斜体 |
\boldsymbol{内容} |
$\boldsymbol{A}$ |
|
\mathcal{内容} |
$\mathcal{A}$ |
|
\mathbb{内容} |
$\mathbb{A}$ |
正比于 |
\propto |
$\propto$ |
无穷 |
\infty |
$\infty$ |
任意 |
\forall |
$\forall$ |
存在 |
\exists |
$\exists$ |
向量 |
\vec{A} |
$\vec{A}$ |
向量点乘 |
\cdot |
$\cdot$ |
spacing
spacing |
LATEX code |
Description |
twice of \quad (= 36 mu) |
a \qquad b |
$a \qquad b$ |
\quad space equal to the current font size (= 18 mu = 1 em) |
a \quad b |
$a \quad b$ |
\ (space after backslash!) equivalent of space in normal text |
a\ b |
$a\ b$ |
5/18 of \quad (= 5 mu) |
a\;b |
$a\;b$ |
4/18 of \quad (= 4 mu) |
a\:b |
$a\:b$ |
3/18 of \quad (= 3 mu) |
a\,b |
$a\,b$ |
no space |
ab |
$ab$ |
-3/18 of \quad (= -3 mu) |
a\!b |
$a\!b$ |
- \displaystyle 显示公式的标准尺寸 简记 D
- \textstyle 正文公式的标准尺寸 简记 T
- \scriptstyle 上下标的标准尺寸 简记 S
- \scriptscriptstyle 更低层的上下标的标准尺寸 简记 SS
What commands are there for horizontal spacing?
There are a number of horizontal spacing macros for LaTeX:
math mode: $\:$
\,
inserts a .16667em
space in text mode, or \thinmuskip
(equivalent to 3mu
) in math mode; there’s an equivalent \thinspace
macro;
\!
is the negative equivalent to \,
; there’s an equivalent \negthinspace
macro;
\>
(or \:
) inserts a .2222em
space in text mode, or \medmuskip
(equivalent to 4.0mu plus 2.0mu minus 4.0mu
) in math mode; there’s an equivalent \medspace
;
\negmedspace
is the negative equivalent to \medspace
;
\;
inserts a .2777em
space in text mode, or \thickmuskip
(equivalent to 5.0mu plus 5.0mu
) in math mode; there’s an equivalent \thickspace
;
\negthickspace
is the negative equivalent to \thickspace
;
\enspace
inserts a space of .5em
in text or math mode;
\quad
inserts a space of 1em
in text or math mode;
\qquad
inserts a space of 2em
in text or math mode;
\kern <len>
inserts a skip of <len>
(may be negative) in text or math mode (a plain TeX skip); there’s also a m
ath-specific \mkern <math len>
;
\hskip <len>
(similar to \kern
);
\hspace{<len>}
inserts a space of length <len>
(may be negative) in math or text mode (a LaTeX \hskip
);
\hphantom{<stuff>}
inserts space of length equivalent to <stuff>
in math or text mode. \phantom{<stuff>}
is similar, inserting a horizontal and vertical space that matches <stuff>
. Should be \protect
ed when used in fragile commands (like \caption
and sectional headings);
\
inserts what is called a “control space” (in text or math mode);
inserts an inter-word space in text mode (and is gobbled in math mode). Similarly for \space
and { }
.
~
inserts an “unbreakable” space (similar to an HTML
) (in text or math mode);
\hfill
inserts a so-called “rubber length” or stretch between elements (in text or math mode). Note that you may need to provide a type of anchor to fill from/to; see What is the difference between \hspace*{\fill}
and \hfill
?;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
\verb|a\,b| & a\,b \quad $a\, b$ \\
\verb|a\thinspace b| & a\thinspace b \quad $a\thinspace b$ \\
\verb|a\!b| & a\!b \quad $a\!b$ \\
\verb|a\negthinspace b| & a\negthinspace b \quad $a\negthinspace b$ \\
\verb|a\:b| & a\:b \quad $a\:b$ \\
\verb|a\>b| & a\>b \quad $a\>b$ \\
\verb|a\medspace b| & a\medspace b \quad $a\medspace b$ \\
\verb|a\negmedspace b| & a\negmedspace b \quad $a\negmedspace b$ \\
\verb|a\;b| & a\;b \quad $a\;b$ \\
\verb|a\thickspace b| & a\thickspace b \quad $a\thickspace b$ \\
\verb|a\negthickspace b| & a\negthickspace b \quad $a\negthickspace b$ \\
\verb|$a\mkern\thinmuskip b$| & $a\mkern\thinmuskip b$ (similar to \verb|\,|) \\
\verb|$a\mkern-\thinmuskip b$| & $a\mkern-\thinmuskip b$ (similar to \verb|\!|) \\
\verb|$a\mkern\medmuskip b$| & $a\mkern\medmuskip b$ (similar to \verb|\:| or \verb|\>|) \\
\verb|$a\mkern-\medmuskip b$| & $a\mkern-\medmuskip b$ (similar to \verb|\negmedspace|) \\
\verb|$a\mkern\thickmuskip b$| & $a\mkern\thickmuskip b$ (similar to \verb|\;|) \\
\verb|$a\mkern-\thickmuskip b$| & $a\mkern-\thickmuskip b$ (similar to \verb|\negthickspace|) \\
\verb|a\enspace b| & a\enspace b \\
\verb|$a\enspace b$| & $a\enspace b$ \\
\verb|a\quad b| & a\quad b \\
\verb|$a\quad b$| & $a\quad b$ \\
\verb|a\qquad b| & a\qquad b \\
\verb|$a\qquad b$| & $a\qquad b$ \\
\verb|a\hskip 1em b| & a\hskip 1em b \\
\verb|$a\hskip 1em b$| & $a\hskip 1em b$ \\
\verb|a\kern 1pc b| & a\kern 1pc b \\
\verb|$a\kern 1pc b$| & $a\kern 1pc b$ \\
\verb|$a\mkern 17mu b$| & $a\mkern 17mu b$ \\
\verb|a\hspace{35pt}b| & a\hspace{35pt}b \\
\verb|$a\hspace{35pt}b$| & $a\hspace{35pt}b$ \\
\verb|axyzb| & axyzb \\
\verb|a\hphantom{xyz}b| & a\hphantom{xyz}b (or just \verb|\phantom|) \\
\verb|$axyzb$| & $axyzb$ \\
\verb|$a\hphantom{xyz}b$| & $a\hphantom{xyz}b$ (or just \verb|\phantom|) \\
\verb|a b| & a b \\
\verb|$a b$| & $a b$ \\
\verb|a\space b| & a\space b \\
\verb|$a\space b$| & $a\space b$ \\
\verb|a\ b| & a\ b \\
\verb|$a\ b$| & $a\ b$ \\
\verb|a{ }b| & a{ }b \\
\verb|$a{ }b$| & $a{ }b$ \\
\verb|a~b| & a~b \\
\verb|$a~b$| & $a~b$ \\
\verb|a\hfill b| & a\hfill b \\
\verb|$a\hfill b$| & $a\hfill b$
|